Sign In

METAFILM 元影 SD3.5L+T FP8 15 Steps Asian Aesthetics ★ 亚洲风格 DPM++2M

40
584
15
Verified:
SafeTensor
Type
Checkpoint Trained
Stats
584
0
Reviews
Published
Oct 27, 2024
Base Model
SD 3.5 Large
Training
Steps: 40,000
Epochs: 20
Usage Tips
Clip Skip: 2
Hash
AutoV2
A7E27BE416
This Stability AI Model is licensed under the Stability AI Community License, Copyright (c) Stability AI Ltd. All Rights Reserved.
Powered by Stability AI

★元影★-SD3.5-★METAFILM-AiARTiST FP8 v2★ large x turbo★

🔥 全新的图像生成模型 SD3.5L+T FP8 15步生成高质量底模

🔥 A brand new T2i model SD3.5L+T high-quality in 15 steps

----------------------------------------------------------------------

CFG推荐3.5,大家可以在3~5之间自行调节。

DPM++2M sgm_uniform采样步数默认15,可酌情调节

CFG recommends 3.5, and adjust it between 3-5 .

sampling steps for DPM++2M sgm_uniform are 15,

which can be adjusted as needed

----------------------------------------------------------------------

Stable Diffusion 3.5 L 是一种基于扩散模型的生成式人工智能技术,它在图像生成、编辑和处理方面具有显著的优势。以下是一些主要优势:

1. 高质量的图像生成

  • 细节丰富:能够生成非常细致且逼真的图像,适用于多种应用场景。

  • 多样性和创意性:可以产生高度多样化和创意性的图像,满足不同的需求。

2. 快速生成速度

  • 高效推理:相比之前的版本和其他一些生成模型,Stable Diffusion 3.5 L 在生成图像时具有更快的推理速度,使得实时应用成为可能。

  • 优化的计算资源使用:通过优化算法,减少了对计算资源的需求,使得在普通硬件上也能运行得更加流畅。

3. 灵活性和可定制性

  • 广泛的风格支持:能够生成不同艺术风格的图像,从写实到抽象,从古典到现代。

  • 参数调整:用户可以通过调整各种参数来控制生成结果的具体特征,如分辨率、风格强度等。

4. 低显存占用

  • 轻量级模型:相比其他大型生成模型,Stable Diffusion 3.5 L 在保持高质量输出的同时,具有较低的内存占用,使其更适合在消费级硬件上运行。

5. 易于集成和部署

  • 开源社区支持:作为开源项目,Stable Diffusion 3.5 L 拥有活跃的开发者社区,提供了丰富的文档和支持,便于开发者进行集成和二次开发。

  • 跨平台兼容性:可以在多种平台上运行,包括Windows、Linux和macOS,以及各种云服务提供商。

6. 多模态能力

  • 文本到图像生成:支持将文本描述转换为高质量的图像,适用于创意设计、广告制作等领域。

  • 图像到图像转换:可以进行图像风格迁移、图像修复等多种图像处理任务。

7. 可控性和稳定性

  • 可控生成:通过条件输入(如文本提示、参考图像)和参数调整,用户可以更精确地控制生成结果。

  • 稳定性:经过大量训练数据和优化,模型在生成过程中表现出较高的稳定性和一致性。

8. 广泛的应用场景

  • 艺术创作:帮助艺术家和设计师生成创意作品。

  • 内容生成:用于生成营销材料、社交媒体内容等。

  • 教育和研究:作为教学工具或科研工具,帮助学生和研究人员探索生成式AI技术。

  • 娱乐:用于游戏开发、虚拟现实等娱乐领域的图像生成。

9. 持续更新和改进

  • 活跃的开发团队:模型不断得到更新和改进,以应对新的挑战和需求。

  • 社区贡献:开源社区的贡献者不断提出新的想法和技术,推动模型的发展。

10. 伦理和隐私考虑

  • 透明度:开源性质使得模型的内部机制更加透明,有助于提高用户对其工作原理的理解。

  • 数据隐私:通过本地化部署和适当的隐私保护措施,可以更好地保护用户的数据安全。

1. High-Quality Image Generation

  • Rich in Detail: Capable of generating highly detailed and realistic images suitable for a wide range of applications.

  • Diversity and Creativity: Can produce highly diverse and creative images, meeting various needs.

2. Fast Generation Speed

  • Efficient Inference: Compared to previous versions and other generative models, Stable Diffusion 3.5 L has faster inference speeds, making real-time applications possible.

  • Optimized Computational Resource Usage: Through algorithm optimization, it reduces the demand for computational resources, allowing it to run more smoothly on consumer-grade hardware.

3. Flexibility and Customizability

  • Wide Range of Style Support: Can generate images in different artistic styles, from photorealistic to abstract, and from classical to modern.

  • Parameter Adjustment: Users can control specific features of the generated results, such as resolution and style intensity, by adjusting various parameters.

4. Low VRAM Usage

  • Lightweight Model: Compared to other large-scale generative models, Stable Diffusion 3.5 L maintains high-quality output while having lower memory usage, making it more suitable for running on consumer-grade hardware.

5. Easy Integration and Deployment

  • Open-Source Community Support: As an open-source project, Stable Diffusion 3.5 L has an active developer community that provides extensive documentation and support, facilitating integration and further development.

  • Cross-Platform Compatibility: Can run on multiple platforms, including Windows, Linux, and macOS, as well as various cloud service providers.

6. Multimodal Capabilities

  • Text-to-Image Generation: Supports converting text descriptions into high-quality images, useful for creative design, advertising, and more.

  • Image-to-Image Conversion: Can perform various image processing tasks, such as style transfer and image restoration.

7. Controllability and Stability

  • Controllable Generation: Users can more precisely control the generation results through conditional inputs (such as text prompts and reference images) and parameter adjustments.

  • Stability: With extensive training data and optimization, the model exhibits high stability and consistency during the generation process.

8. Wide Range of Applications

  • Artistic Creation: Helps artists and designers generate creative works.

  • Content Generation: Used for creating marketing materials, social media content, and more.

  • Education and Research: Serves as a teaching or research tool, helping students and researchers explore generative AI technology.

  • Entertainment: Used for game development, virtual reality, and other entertainment-related image generation.

9. Continuous Updates and Improvements

  • Active Development Team: The model is continuously updated and improved to address new challenges and needs.

  • Community Contributions: Open-source community contributors continually propose new ideas and technologies, driving the model's development.

10. Ethical and Privacy Considerations

  • Transparency: The open-source nature makes the model's internal mechanisms more transparent, helping users better understand how it works.

  • Data Privacy: Through local deployment and appropriate privacy protection measures, user data security can be better protected.

————————————————————————————————————————

测试问题请留言,业务合作看个人首页 +V Zyuan980

AiARTiST | Metafilm 中国·山东 数字人/AiGC/元宇宙方向

做好工具人 服务艺术家 联系方式:https://x1f3ewlrcf.feishu.cn/wiki/BjJ1waQaLitPB4k7Lbvc0MaVnzb?fromScene=spaceOverview&open_tab_from=wiki_home

————————————————————————————————————————