Type | |
Stats | 584 0 |
Reviews | (41) |
Published | Oct 27, 2024 |
Base Model | |
Training | Steps: 40,000 Epochs: 20 |
Usage Tips | Clip Skip: 2 |
Hash | AutoV2 A7E27BE416 |
★元影★-SD3.5-★METAFILM-AiARTiST FP8 v2★ large x turbo★
🔥 全新的图像生成模型 SD3.5L+T FP8 15步生成高质量底模
🔥 A brand new T2i model SD3.5L+T high-quality in 15 steps
----------------------------------------------------------------------
CFG推荐3.5,大家可以在3~5之间自行调节。
DPM++2M sgm_uniform采样步数默认15,可酌情调节
CFG recommends 3.5, and adjust it between 3-5 .
sampling steps for DPM++2M sgm_uniform are 15,
which can be adjusted as needed
----------------------------------------------------------------------
Stable Diffusion 3.5 L 是一种基于扩散模型的生成式人工智能技术,它在图像生成、编辑和处理方面具有显著的优势。以下是一些主要优势:
1. 高质量的图像生成
细节丰富:能够生成非常细致且逼真的图像,适用于多种应用场景。
多样性和创意性:可以产生高度多样化和创意性的图像,满足不同的需求。
2. 快速生成速度
高效推理:相比之前的版本和其他一些生成模型,Stable Diffusion 3.5 L 在生成图像时具有更快的推理速度,使得实时应用成为可能。
优化的计算资源使用:通过优化算法,减少了对计算资源的需求,使得在普通硬件上也能运行得更加流畅。
3. 灵活性和可定制性
广泛的风格支持:能够生成不同艺术风格的图像,从写实到抽象,从古典到现代。
参数调整:用户可以通过调整各种参数来控制生成结果的具体特征,如分辨率、风格强度等。
4. 低显存占用
轻量级模型:相比其他大型生成模型,Stable Diffusion 3.5 L 在保持高质量输出的同时,具有较低的内存占用,使其更适合在消费级硬件上运行。
5. 易于集成和部署
开源社区支持:作为开源项目,Stable Diffusion 3.5 L 拥有活跃的开发者社区,提供了丰富的文档和支持,便于开发者进行集成和二次开发。
跨平台兼容性:可以在多种平台上运行,包括Windows、Linux和macOS,以及各种云服务提供商。
6. 多模态能力
文本到图像生成:支持将文本描述转换为高质量的图像,适用于创意设计、广告制作等领域。
图像到图像转换:可以进行图像风格迁移、图像修复等多种图像处理任务。
7. 可控性和稳定性
可控生成:通过条件输入(如文本提示、参考图像)和参数调整,用户可以更精确地控制生成结果。
稳定性:经过大量训练数据和优化,模型在生成过程中表现出较高的稳定性和一致性。
8. 广泛的应用场景
艺术创作:帮助艺术家和设计师生成创意作品。
内容生成:用于生成营销材料、社交媒体内容等。
教育和研究:作为教学工具或科研工具,帮助学生和研究人员探索生成式AI技术。
娱乐:用于游戏开发、虚拟现实等娱乐领域的图像生成。
9. 持续更新和改进
活跃的开发团队:模型不断得到更新和改进,以应对新的挑战和需求。
社区贡献:开源社区的贡献者不断提出新的想法和技术,推动模型的发展。
10. 伦理和隐私考虑
透明度:开源性质使得模型的内部机制更加透明,有助于提高用户对其工作原理的理解。
数据隐私:通过本地化部署和适当的隐私保护措施,可以更好地保护用户的数据安全。
1. High-Quality Image Generation
Rich in Detail: Capable of generating highly detailed and realistic images suitable for a wide range of applications.
Diversity and Creativity: Can produce highly diverse and creative images, meeting various needs.
2. Fast Generation Speed
Efficient Inference: Compared to previous versions and other generative models, Stable Diffusion 3.5 L has faster inference speeds, making real-time applications possible.
Optimized Computational Resource Usage: Through algorithm optimization, it reduces the demand for computational resources, allowing it to run more smoothly on consumer-grade hardware.
3. Flexibility and Customizability
Wide Range of Style Support: Can generate images in different artistic styles, from photorealistic to abstract, and from classical to modern.
Parameter Adjustment: Users can control specific features of the generated results, such as resolution and style intensity, by adjusting various parameters.
4. Low VRAM Usage
Lightweight Model: Compared to other large-scale generative models, Stable Diffusion 3.5 L maintains high-quality output while having lower memory usage, making it more suitable for running on consumer-grade hardware.
5. Easy Integration and Deployment
Open-Source Community Support: As an open-source project, Stable Diffusion 3.5 L has an active developer community that provides extensive documentation and support, facilitating integration and further development.
Cross-Platform Compatibility: Can run on multiple platforms, including Windows, Linux, and macOS, as well as various cloud service providers.
6. Multimodal Capabilities
Text-to-Image Generation: Supports converting text descriptions into high-quality images, useful for creative design, advertising, and more.
Image-to-Image Conversion: Can perform various image processing tasks, such as style transfer and image restoration.
7. Controllability and Stability
Controllable Generation: Users can more precisely control the generation results through conditional inputs (such as text prompts and reference images) and parameter adjustments.
Stability: With extensive training data and optimization, the model exhibits high stability and consistency during the generation process.
8. Wide Range of Applications
Artistic Creation: Helps artists and designers generate creative works.
Content Generation: Used for creating marketing materials, social media content, and more.
Education and Research: Serves as a teaching or research tool, helping students and researchers explore generative AI technology.
Entertainment: Used for game development, virtual reality, and other entertainment-related image generation.
9. Continuous Updates and Improvements
Active Development Team: The model is continuously updated and improved to address new challenges and needs.
Community Contributions: Open-source community contributors continually propose new ideas and technologies, driving the model's development.
10. Ethical and Privacy Considerations
Transparency: The open-source nature makes the model's internal mechanisms more transparent, helping users better understand how it works.
Data Privacy: Through local deployment and appropriate privacy protection measures, user data security can be better protected.
————————————————————————————————————————
测试问题请留言,业务合作看个人首页 +V Zyuan980
AiARTiST | Metafilm 中国·山东 数字人/AiGC/元宇宙方向
做好工具人 服务艺术家 联系方式:https://x1f3ewlrcf.feishu.cn/wiki/BjJ1waQaLitPB4k7Lbvc0MaVnzb?fromScene=spaceOverview&open_tab_from=wiki_home
————————————————————————————————————————