Sign In

WAN2.2_I2V_Notes

10

Use workflow

WAN 2.2 I2V GGUF COMPACT + SPEED WF | Lightning Lora 4+4 steps

WanFaceDetailer

Recommended model

Wan2.2 I2V A14B GGUF

Recommended resources

Wan 2.2 Lightning LoRAs


Start by generating the video at 720×944 or 512×880.
First, test prompt stability and whether the action LoRA loads correctly.
At 512×880, generation takes about 3 minutes on a RTX 4070 Ti Super.
Once prompts work and each model understands correctly, increase the resolution for final generation.
At 720×1024, generation time is about 15 minutes.
After producing a good base video, proceed with eye stabilization, upscaling, and frame interpolation.
To further improve stability, resolution, and smoothness, use the WanFaceDetailer workflow to do it all at once:
https://www.reddit.com/r/StableDiffusion/comments/1n5zwzu/wanfacedetailer/
After any upscaling model, remember to run Color Match (KJ nodes) for color calibration.
After color matching, use JPEG Compression Removal - FBCNN for artifact removal.
See FBCNN’s principles here:
https://github.com/jiaxi-jiang/FBCNN
Finally, perform frame interpolation with RIFE VFI (recommend rife47 or rife49).
Use either the rife47 or rife49 model for interpolation.
Do a final pass to check details, then publish.

Notes:

  • wan2.2_i2v is very sensitive to input image quality; higher input resolution tends to yield better results.

  • At 512×880, eyes often blur; at 720×944, eye stability is acceptable.

  • Using 720×1024 makes details much clearer.

使用工作流

WAN 2.2 I2V GGUF COMPACT + SPEED WF | Lightning Lora 4+4 steps

WanFaceDetailer

推薦模型

Wan2.2 I2V A14B GGUF

推薦資源

Wan 2.2 Lightning LoRAs

先用720944或512880的解析度生成影片

先測試提詞穩定度跟動作LORA載入是否正常

以這個512*880解析度生成,以RTX 4070ti super生成大約3分鐘左右

測試確認提詞正常且倔任模型可以正常理解後再提高解析度做生成

解析度提高到720*1024大約生成時間是15分鐘

生成出好的影片後,接下來就要做眼睛穩定還有放大和插幀

進一步提高影片穩定度和解析度和影片流暢度

使用WanFaceDetailer工作流來一次達成

https://www.reddit.com/r/StableDiffusion/comments/1n5zwzu/wanfacedetailer/

記得有使用放大模型後面都要使用Color Match ( KJ nodes ) 進行校色

校色完使用JPEG Compression Removal - FBCNN去雜質

FNBC原理可以看這裡 https://github.com/jiaxi-jiang/FBCNN

最後使用RIFE VFI (recommend rife47 and rife49)做插幀

使用rife47或rife49模型進行插幀

最後檢查影片細節就可以做發布了

補充事項:

wan2.2_i2v很吃輸入圖片的品質,輸入的圖片解析度越高越容易獲得好結果

在512*880眼睛蠻容易變模糊,720*944生成眼睛還算穩定

使用720*1024就細節清楚很多

10

Comments