Sign In
AI Abbreviations Uncovered

Foreword

As I am still quite new to creating AI materials, I keep stumbling across terms that do not mean anything to me at first. I am writing this down here to help me. And maybe someone else will find it useful too.

Knowing the meaning of an abbreviation can sometimes be very helpful for a deeper understanding of what the abbreviation is standing for.

Abbreviations

Below I list the abbreviations that are either directly or indirectly related to AI image generation. I have looked up some of these and found others in connection with the research. The list is sorted alphabetically.

A

A.L.I.C.E. β†’ Artificial Linguistic Internet Computer Entity

A1111 β†’ AUTOMATIC1111

AdaLoRA β†’ Adaptive LoRA

ADAM β†’ Adaptive Moment Estimation

AdamW β†’ Adam with Decoupled Weight Decay

ADetailer β†’ After Detailer

AE β†’ AutoEncoder

AGI β†’ Artificial General Intelligence

AI β†’ Artificial Intelligence

AIML β†’ Artificial Intelligence Markup Language

AIDA β†’ Artificial Intelligence Digital Assistant

AIDA β†’ Advanced Interactive Digital Assistant

ALP β†’ Abductive Logic Programming

ALU β†’ Arithmetic Logic Unit

AMD β†’ Advanced Micro Devices

AmI β†’ Ambient Intelligence

ANFIS β†’ Adaptive Neuro Fuzzy Inference System

ANI β†’ Artificial Narrow Intelligence

ANN β†’ Artificial Neural Network

API β†’ Application Programming Interface

APU β†’ Accelerated Processor Unit

ASI β†’ Artificial Superintelligence

ASIC β†’ Accelerator application-specific integrated circuit

ASP β†’ Answer Set Programming

aux β†’ Auxiliary

AWGN β†’ Additive White Gaussian Noise

AWQ β†’ Aware Weight Quantization

AWS β†’ Amazon Web Service

B

BAT β†’ Batch

BERT β†’ Bidirectional Encoder Representations from Transformers

BLIP β†’ Bootstrapping Language-Image Pre-training

bf16 β†’ BFloat16

BRISQUE β†’ Blind/Referenceless Image Spatial Quality Evaluator

BSRGAN β†’ Blind Super Resolution Generative Adversarial Network

C

C3Lier β†’ Conv2d layer with a 3x3 kernel

CAE β†’ Contractive Autoencoder

CARN β†’ Cascading Residual Network (???)

CCA β†’ Canonical Correlation Analysis

CFG β†’ Classifier-Free Guidance

CFM β†’ Coupling Flow Matching

CIFAR β†’ Canadian Institute For Advanced Research

CKPT β†’ Checkpoint

CLIP β†’ Contrastive Language-Image Pre-training

CM β†’ Contiguous Memory

CNN β†’ Convolutional Neural Network

COCO β†’ Common Object in Context

Colab β†’ Colaboratory

conv β†’ Convolutional

CompVis β†’ Computer Vision & Learning

CPU β†’ Central Processing Unit

CSV β†’ Comma-Separated Values

CTMC β†’ Continuous-Time Markov Chain

CUDA β†’ Compute Unified Device Architecture

CVAE β†’ Conditional VAE

D

DanTagGen β†’ Danbooru Tag Generator

DAdaptAdam β†’ D-Adaptation Adam

DAR β†’ Display Aspect Ratio

DDIM β†’ Denoising Diffusion Implicit Model

DDPM β†’ Denoising Diffusion Probabilistic Model

DEIS β†’ Diffusion Exponential Integrator Sampler

DFIR β†’ Digital forensics and incident response

DiT β†’ Diffusion Transformer

DIV2K β†’ DIVerse 2K

DL β†’ Description Logic

DLA β†’ Deep Learning Architecture

DLSS β†’ Deep Learning Super Sampling

DM β†’ Diffusion Model

DNN β†’ Deep Neural Network

DoRA β†’ Weight-Decomposed Low-Rank Adaptation

DoS β†’ Denial of Service

DPM β†’ Diffusion Probabilistic Model

DPU β†’ Data Processing Unit

DL β†’ Deep Learning

DLL β†’ Dynamic Link Library

DQ β†’ Double Quantization

DSF β†’ Domain-specific Supervised Fine-Tuning

DTMC β†’ Discrete-Time Markov Chain

DyLoRA β†’ Dynamic LoRA

DLWB β†’ Deep Learning Workbench

E

E2E β†’ End-to-End Learning

ECCV β†’ European Conference on Computer Vision

ECMA β†’ European Computer Manufacturers Association

EDSR β†’ Enhanced Deep Super-Resolution

ELBO β†’ Evidence Lower Bound

ELI5 β†’ Explain Like I'm 5

ELMO β†’ Embeddings from Language Models

ELO β†’ Arpad Elo**

EMA β†’ Exponential Moving Average

ESN β†’ Echo State Network

ESPCN β†’ Efficient Sub-Pixel Convolutional Neural Network

ESRGAN β†’ Enhanced Super-Resolution Generative Adversarial Network

F

FCN β†’ Fully Convolutional Networks

FDP β†’ Forward Diffusion Process

FFT β†’ Fast Fourier Transform

FID β†’ FrΓ©chet Inception Distance

FL β†’ Federated Learning

FLOPS β†’ Floating point operations per second

FLAX β†’ ???

FLUX β†’ ???

FM β†’ Foundation Model

FM β†’ Flow Matching

FNN β†’ Feedforward Neural Network

FOR β†’ Frame-of-Reference

FSM β†’ Finite-state machine

FSRCNN β†’ Fast Super-Resolution CNN

FT β†’ Fine-Tuning

fp16 β†’ floating point 16

fp32 β†’ floating point 32

G

GA β†’ Genetic Algorithm

GAI β†’ Generative AI

GAI β†’ Generative Artificial Intelligence

GAN β†’ Generative Adversarial Networks

GeLU β†’ Gaussian Error Linear Unit

GenAI β†’ Generative AI

GGUF β†’ GPT-Generated Unified Format

GIGO β†’ garbage in, garbage out

GLIGEN β†’ Grounded Language-to-Image Generation

GLUE β†’ General Language Understanding Evaluation

GMM β†’ Gaussian Mixture Model

GP β†’ Generative Pretraining

GPT β†’ Generative Pre-trained Transformer

GPTQ β†’ Generalized Post-Training Quantization

GPU β†’ Graphical Processing Unit

GRU β†’ Gated Recurrent Units

GUI β†’ Graphical User Interface

H

HAN β†’ Holistic Attention Network

HBM β†’ High Bandwidth Memory

HDF β†’ Hierarchical Data Format

HDR β†’ High Dynamic Range

HED β†’ Holistically-Nested Edge Detection

HITL β†’ Human in the Loop

HMM β†’ Hidden Markov Model

HR β†’ High Resolution

HTML β†’ Hypertext Markup Language

I

IA3 β†’ Infused Adapter by Inhibiting and Amplifying Inner Activations

IBM β†’ International Business Machines

ID β†’ Identification/Identity/Identifier

IETF β†’ Internet Engineering Task Force

IID β†’ Independent and Identically Distributed

iLECO β†’ instant-LECO

img2img β†’ Image-to-Image

Inf β†’ Infinity

IoT β†’ Internet of Things

IoV β†’ Internet of Vehicles

IPL β†’ Information Processing Language

J

JAX β†’ Just After eXecution

JEPA β†’ Joint Embedding Predictive Architecture

JPG β†’ Joint Photographic (Experts) Group

JPEG β†’ Joint Photographic Experts Group

JS β†’ JavaScript

JSON β†’ JavaScript Object Notation

K

KARRAS β†’ (Tero) Karras*

KL-D β†’ Kullback–Leibler Divergence

L

LAION β†’ Large-scale Artificial Intelligence Open Network

LapSRN β†’ Laplacian Pyramid Super-Resolution Network

LCM β†’ Latent Consistency Model

LDA β†’ Latent Dirichlet Allocation

LDM β†’ Latent Diffusion Model

LDSR β†’ Latent Diffusion Super Resolution

LeCo β†’ Learned Compression

LiDB β†’ Lightweight DreamBooth

LierLa β†’ Linear layers and Conv2d layers with a 1x1 kernel

LIMA β†’ Less Is More for Alignment

Llama β†’ Large Language Model Meta AI

LLaMA β†’ Large Language Model Meta AI

LLD β†’ Large Language Dataset

LLM β†’ Large Language Models

LMS β†’ Linear Multi Step

LN β†’ Layer Norm

LN β†’ Layer Normalization

LoCon β†’ LoRA for convolution network

LoHa β†’ LoRA with Hadamard product representation

LoKR β†’ LoRA with Kronecker product representation

LoRA β†’ Low-Rank Adaptation

LoRA-FA β†’ LoRA with Frozen-A

LR β†’ Learning Rate

LR β†’ Low Resolution

LSTM β†’ Long Short-Term Memory

LyCORIS β†’ Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion

M

MAR β†’ Modified aspect ratio

MC β†’ Modified Concept

MDP β†’ Markov Decision Process

MPS β†’ Metal Performance Shaders

MI β†’ Membership Inference

MIA β†’ Membership Inference Attack

MIPS β†’ Mega Instructions Per Second

MIT β†’ Massachusetts Institute of Technology

ML β†’ Machine Learning

MLDC β†’ Machine Learning Data Catalog

MLP β†’ Multi-Layer Perceptron

MMDiT β†’ Multimodal Diffusion Transformer

MMLU β†’ Massive Multitask Language Understanding

MNIST β†’ Modified National Institute of Standards and Technology

MSA β†’ Multi-headed Self Attention

MSE β†’ Mean Square Error

MV β†’ machine vision

MXNet β†’ ???

N

NAG β†’ Nesterov’s accelerated gradient

NaN β†’ Not a Number

NC β†’ New Concept

NCSN β†’ Noise Conditional Score Network

NER β†’ Named Entity Recognition

NIST β†’ National Institute of Standards and Technology

NF β†’ NormalFloat

NF4 β†’ 4-bit NormalFloat

NLP β†’ Natural Language Processing

NLU β†’ Natural Language Understanding

NMT β†’ neural machine translation

NPU β†’ Neural Processing Unit

NSFW β†’ Not Safe For Work

O

OAR β†’ Original aspect ratio

ONNX β†’ Open Neural Network Exchange

ODE β†’ Ordinary Differential Equation

OSS β†’ Open Source Software

P

P-Tuning β†’ Prompt-Tuning

PaLM β†’ Pathways Language Model

pb β†’ protocol buffer (protobuf)

PCA β†’ Principal Component Analysis

PCTL β†’ Probabilistic Computation Tree Logic

PEFT β†’ Parameter Efficient Fine-Tuning

PEP β†’ Python Enhancement Proposal

PIL β†’ Python Image Library

PIRM β†’ Perceptual Image Restoration and Manipulation

PLMS β†’ Pseudo Linear Multi-Step

PNDM β†’ Pseudo Numerical Methods for Diffusion Models

PNG β†’ Portable Network Graphics

PP β†’ Probabilistic Programming

PSO β†’ Particle Swarm Optimization

PSRN β†’ Peak Signal to Noise Ratio

PT β†’ Pickle Tensor

PTH β†’ PyTorcH

PyPA β†’ Python Packaging Authority

Q

QLoRA β†’ Quantized LoRA

QML β†’ Quantum Machine Learning

R

RAFT β†’ Retrieval-Augmented FineTuning

RAM β†’ Random Access Memory

RBF β†’ Radial Basis Function

RCAN β†’ residual channel attention networks

RDB β†’ Residual Dense Block

RDP β†’ reverse diffusion process

ReLU β†’ Rectified Linear Unit

ResNet β†’ Residual Network

RF β†’ Rectified Flow

RGB β†’ red, green and blue

RIRO β†’ rubbish in, rubbish out

RL β†’ Reinforcement Learning

RLE β†’ Run-Length Encoding

RLHF β†’ Reinforcement Learning From Human Feedback

RMSprop β†’ Root Mean Square Propagation

RNN β†’ Recurrent Neural Network

RoBERTa β†’ Robustly Optimized BERT Pretraining Approach

ROCm β†’ Radeon Open Compute platform

ROI β†’ Region of interest

ROM β†’ Read Only Memory

RoPE β†’ rotary positional embeddings

RP β†’ Region Proposal

Rprop β†’ Resilient Propagation

RRDB β†’ Residual-in-Residual Dense Block

RSICD β†’ Remote Sensing Image Captioning Dataset

RSTB β†’ Residual Swin Transformer Block

RVRT β†’ Recurrent Video Restoration Transformer

S

SAI β†’ Stability AI

SAM β†’ ???

SAR β†’ storage aspect ratio

SCUNet β†’ Swin-Conv-UNet

sd β†’ stable diffusion

SD3M β†’ Stable Diffusion 3 Medium

SDE β†’ Stochastic Differential Equation

SDEdit β†’ Stochastic Differential Editing

SDMH β†’ Stable Diffusion Model Hash

SDPA β†’ Scaled Dot Product Attention

SDXL β†’ Stable Diffusion XL

SEG β†’ Semantic Segmentation (???)

SEGM β†’ Segmentation

SEGS β†’ ???

SFW β†’ Safe For Work

SGD β†’ Stochastic Gradient Descent

SGM β†’ Score-Based Generative Model

SI β†’ Synthetic Intelligence

SI β†’ Swarm Intelligence

SID β†’ Single Image Dataset

SNR β†’ Signal-to-Noise Ratio

SoTA β†’ State of The Art

SPMD β†’ Single Program, Multiple Data

SQL β†’ Structured Query Language

SQuAD β†’ Stanford Question Answering Dataset

SRGAN β†’ Super Resolution Generative Adversarial Network

ss‭ β†’ Standard Specification

ss β†’ Single Shot

SSD-1B β†’ Segmind Stable Diffusion-1B

sshs β†’ ???

SSIM β†’ Structural Similarity

ssmd β†’ Single Shot Multi-Box

SVM β†’ Support Vector Machine

SVR β†’ Support Vector Regression

SWAG β†’ Situations With Adversarial Generations

SWD β†’ Scheduled Weight Decay

SwiGLU β†’ Swish-Gated Linear Unit

SwinIR β†’ Image Restoration Using Swin Transformer

T

TAESD β†’ Tiny AutoEncoder for Stable Diffusion

TCS β†’ theoretical computer science

TEnc β†’ Text Encoder

tflite β†’ TensorFlow Lite

TI β†’ Textual Inversion

TL;DR β†’ too long; didn't read

TLDR β†’ too long; didn't read

TML β†’ Trusted Machine Learning

ToMe β†’ Token Merging

TPU β†’ Tensor Processing Unit

TTI β†’ Text-to-Image

txt2img β†’ Text-to-Image

U

UI β†’ User Interface

unet β†’ U-shaped encoder-decoder network

UniPC β†’ Unified Predictor-Corrector

V

VAE β†’ Variational Autoencoder

VENV β†’ Virtual ENVironment

VeRA β†’ Vector-based Random Matrix Adaptation

VFX β†’ Visual Effects

VGG β†’ Visual Geometry Group

VGG16 β†’ VGG-16 (network with 16 layers)

VGGNet β†’ Visual Geometry Group Network

vGPU β†’ virtual GPU

ViT β†’ Vision Transformer

VLB β†’ Variational Lower Bound

VPU β†’ Vision Processing Unit

VRAM β†’ Video Random Access Memory

VSM β†’ Value Stream Mapping

W

W&B β†’ Weights & Biases

WIP β†’ Performance Wizard

X

XAI β†’ Explainable Artificial Intelligence

XAML β†’ Extensible Application Markup Language

XLA β†’ Accelerated Linear Algebra

XML β†’ Extensible Markup Language

Y

YAML β†’ YAML Ain't Markup Language

YAML β†’ Yet Another Markup Language

YOLO β†’ You Only Look Once

Z

ZSL β†’ Zero-Shot-Learning

The abbreviations I don't know yet or where I'm not sure are with ??? marked.

Final Words

The list of abbreviations does not claim to be exhaustive. If I come across new abbreviations I don't know, I will update the list here.

Finally

Have a nice day. Have fun. Be inspired!

Other Resources

[1] https://github.com/AgaMiko/machine-learning-acronyms

[2] https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence

* Engineer working for NVIDIA

** Hungarian-American physics professor

14

Comments