santa hat
deerdeer nosedeer glow
Sign In

How to create effective Captions and Tags for training and generation. (Guide)

How to create effective Captions and Tags for training and generation. (Guide)

Best model for 1.5, SDXL 1.0 Base, Pony -

1)Taggui https://github.com/jhc13/taggui

wd-vit-large-tagger-v3 https://huggingface.co/spaces/SmilingWolf/wd-tagger

Best model for FLUX dev, FLUX schnell -

1)Joytag Caption - Batch https://github.com/MNeMoNiCuZ/joy-caption-batch https://civitai.com/articles/6723/tutorial-tool-caption-files-for-flux-training-sfw-nsfw

2)Taggui https://github.com/jhc13/taggui

A good model for FLUX dev, FLUX schnell - Florence-2-base-PromptGen Florence-2-base-PromptGen

Instruction for Tags:

1)Taggui

1.Download Taggui

2.Unpack archive and run taggui.exe

3.Select - wd-vit-large-tagger-v3

4.FIle > Load Directory (Ctrl+L) - Select folder with images5.Start Auto-Captioning

Settings and Tips:

1.Maximum tags - 30 (default) is a good starting point. The more detailed images you select the more tags the model can generate. A lot of tags can create artifacts on generation.

2.Show probabilities - activate weight on tags. Can create more precise tags for image. To activate this futures for training (Kohya_SS) need to activate - Parameters > Advanced > Weighted captions ON.

Instruction for Captions:

1)Joytag Caption

Prepare: Install Python 3.10 and CUDA Toolkit 12.6 if you don't have to. (Installing running requirements)

1.Joytag Caption

2.Download Joytag Caption

3.Unpack archive and run venv_create.bat

3.1.Select a Python version by number: 1 (Python 3.10)

3.2.Enter the name for your virtual environment: Enter

3.3.Do you want to upgrade pip now?: Y

3.4.Do you want to install 'uv' package?: Y

3.5.Do you wish to run 'uv pip install -r requirements.txt'?: Y

4.Install:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

Usage and Tips:

Prepare: Put images inside - input folder in joy-caption-batch-main.

1.Run Terminal inside joy-caption-batch-main folder

2.Run:

python -m venv venv
.\venv\Scripts\activate
py batch.py

Note:

Default caption length is 256 which cannot be recommended for character.

Style train - up 300 words.

Character train - up 25 words.

2)Taggui

1.Download Taggui

2.Unpack archive and run taggui.exe

3.Select - Florence-2-base-PromptGen

4. FIle > Load Directory (Ctrl+L) - Select folder with images

5.Start Auto-Captioning

Settings and Tips:

1.Maximum tokens - 50 (default) is good start point. The recommended maximum value is 300.

2.Number of beams - 10 (default) is a good standard. Increasing this number increase the precision prediction of the detect algorithm. More value requires more VRAM

18

Comments