santa hat
deerdeer nosedeer glow
Sign In

SDXL Dark Angel

109
1.1k
27
Updated: Oct 5, 2024
stylewomanangelstyelsdxl
Verified:
SafeTensor
Type
LoRA
Stats
1,107
Reviews
Published
Aug 13, 2023
Base Model
SDXL 1.0
Trigger Words
angel
Hash
AutoV2
66E8A46C0A
default creator card background decoration
ArienTOP's Avatar
ArienTOP

AI Pure Land traffic group telegrams: https://t.me/+soU-Ws67aBlkY2I1

Kaiden AI private model custom consultation telegram: https://t.me/+Ql4sngcJlbhmOTU1

Contact information: wechat ID: ArienTOP, Email: [email protected]

Model introduction

The original size of the lora model is 1.7g, in order to save hard disk space and video memory space, through sv_fro method for matrix compression, reduced to the original 1/100 size, and the loss of accuracy control within 5%, if you need the full version of 1.7g can join our QQ group: 895633778

Introduction to compression algorithm:

sv_fro method is a method of deep compression of matrix, which is mainly used to reduce the storage space and computational complexity of matrix.

The basic idea of the sv_fro method is to decompose A matrix into the product of three matrices using Singular Value Decomposition (SVD) : A = U SV ^T, where U and V are orthogonal matrices and S is a singular value matrix. A singular value matrix S is a diagonal matrix whose diagonal elements are called singular values.

In sv_fro method, only the part with large singular value in matrix A is kept, and the smaller singular value is set to 0, so as to realize the deep compression of matrix. The specific steps are as follows:

1. Perform singular value decomposition on matrix A to obtain U, S and V.

2. According to the preset threshold, set the singular value in S that is less than the threshold to 0.

3. Reconstruct the original matrix A using the compressed singular value matrix S, U and V.

After deep compression by sv_fro method, the storage space of matrix can be greatly reduced, and the computational complexity can be reduced to a certain extent. This has important practical significance for the tasks that need to deal with large-scale matrices.

模型简介

本lora模型原大小为1.7g,为了节省硬盘空间和显存空间,通过sv_fro方法进行矩阵压缩,缩小到原来的1/100大小,而损失精度控制在百分之5以内,如果你需要完整版1.7g的可以加入我们的QQ群:895633778

压缩算法简介:

sv_fro方法是一种对矩阵进行深度压缩的方法,主要用于减少矩阵的存储空间和计算复杂度。

sv_fro方法的基本思想是利用奇异值分解(Singular Value Decomposition,SVD)将矩阵分解为三个矩阵的乘积:A = U S V^T,其中U和V是正交矩阵,S是奇异值矩阵。奇异值矩阵S是一个对角矩阵,其对角线上的元素称为奇异值。

在sv_fro方法中,只保留矩阵A中奇异值较大的部分,将较小的奇异值设为0,从而实现对矩阵的深度压缩。具体步骤如下:

1. 对矩阵A进行奇异值分解,得到U、S和V。

2. 根据预设的阈值,将S中小于阈值的奇异值设为0。

3. 使用压缩后的奇异值矩阵S以及U和V重构原始矩阵A。

通过sv_fro方法进行深度压缩后,可大幅减少矩阵的存储空间,同时还能在一定程度上降低计算复杂度。这对于需要处理大规模矩阵的任务来说,具有重要的实际应用意义。

Alpha1

本版本的封面你可以非常清晰的看到XL与SD1.5之间的差距。

在原训练素材中,有衣服上带文字的图,如同封面你看到的一样,XL有个文字概念,而且非常的清晰!

这是对XL的第一次探索,希望大家能够多多返图!