Sign In

Invisible people

35
132
25
15
Verified:
SafeTensor
Type
LoRA
Stats
132
25
86
Reviews
Published
Apr 14, 2025
Base Model
Flux.1 D
Trigger Words
invisible
invisible person
Hash
AutoV2
6F68CD89E5
The FLUX.1 [dev] Model is licensed by Black Forest Labs. Inc. under the FLUX.1 [dev] Non-Commercial License. Copyright Black Forest Labs. Inc.
IN NO EVENT SHALL BLACK FOREST LABS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH USE OF THIS MODEL.

Invisible people

This model generates invisible people.

Trained on 190 mixed images of men and women in various outfits and poses.

The model tends to generate women and men with abundant curves, so if you want to generate skinny people and you don't get them, I recommend you add the desired body shape to your prompt.

The model is trained with custom Captions and a few tags.

I have prepared some instructions for you to insert into any LLM (ChatGPT, Claude, Perplexity etc) that will help you rewrite your prompt to make it work for LoRa.

You can also insert your own prompts made of just TAGS and the LLM should be able to reinterpret it correctly for FLUX.

PASTE THIS: 

𝚈𝚘𝚞 πšŠπš›πšŽ 𝚊 π™΅π™»πš„πš‡ πš™πš›πš˜πš–πš™πš πšŽπš—πšπš’πš—πšŽπšŽπš›, πšœπš™πšŽπšŒπš’πšŠπš•πš’πš£πš’πš—πš πš’πš— πš›πšŽπšπš’πš—πš’πš—πš πšžπšœπšŽπš› πš’πš—πš™πšžπšπšœ πš’πš—πšπš˜ πš‘πš’πšπš‘-πššπšžπšŠπš•πš’πšπš’ πš™πš›πš˜πš–πš™πšπšœ πšπš˜πš› πšπšŽπš—πšŽπš›πšŠπšπš’πš—πš πš’πš–πšŠπšπšŽπšœ 𝚘𝚏 πš’πš—πšŸπš’πšœπš’πš‹πš•πšŽ πš™πšŽπš˜πš™πš•πšŽ. 
𝚈𝚘𝚞 πš πš’πš•πš• πšŽπš—πšœπšžπš›πšŽ πšπš‘πšŠπš πšπš‘πšŽ πš˜πšžπšπš™πšžπš πš’πšœ πš’πš— πš•πš’πš—πšŽ πš πš’πšπš‘ πšπš‘πšŽ πš˜πš›πš’πšπš’πš—πšŠπš• πš’πš—πšπšŽπš—πš, πš πš‘πš’πš•πšŽ πšŠπš•πšœπš˜ πšŽπš—πš›πš’πšŒπš‘πš’πš—πš πšπšŽπšπšŠπš’πš•πšœ πšπš˜πš› πšπš›πšŽπšŠπšπšŽπš› πšŸπš’πšœπšžπšŠπš• πšŒπš•πšŠπš›πš’πšπš’. 

πšƒπšŠπšœπš” πš›πšŽπššπšžπš’πš›πšŽπš–πšŽπš—πšπšœ: 
- π™Έπš πšπš‘πšŽ πšžπšœπšŽπš› πš’πš—πš™πšžπš πš’πšœ πš“πšžπšœπš 𝚝𝚊𝚐𝚜, πš›πšŽπš’πš—πšπšŽπš›πš™πš›πšŽπš πšπš‘πšŽπš– πš‹πš’ πš›πšŽπš πš›πš’πšπš’πš—πš 𝚊 πšπšžπš•πš• πšŒπšŠπš™πšπš’πš˜πš—- π™Έπš πšπš‘πšŽ πšžπšœπšŽπš› πš’πš—πš™πšžπš πšŒπš˜πš—πšπšŠπš’πš—πšœ πšπšŽπšœπšŒπš›πš’πš™πšπš’πš˜πš—πšœ πš˜πš› 𝚝𝚊𝚐𝚜 𝚘𝚏 πšπšŠπšŒπš’πšŠπš• πš˜πš› πšœπš”πš’πš— πš˜πš› πš‘πšŠπš’πš› πš™πšŠπš›πšπšœ, πš›πšŽπš–πš˜πšŸπšŽ πšπš‘πšŽπš–, πšŽπš—πšœπšžπš›πšŽ πšπš‘πšŠπš πšπš‘πšŽ πš›πšŽπšœπšžπš•πšπš’πš—πš πš™πš›πš˜πš–πš™πš πš’πšœ πšπš›πšŽπšŽ 𝚘𝚏 πšŽπš•πšŽπš–πšŽπš—πšπšœ πšπš‘πšŠπš πšŒπš˜πšžπš•πš πšπšŽπšœπšŒπš›πš’πš‹πšŽ πš™πš‘πš’πšœπš’πšŒπšŠπš• πšŠπš™πš™πšŽπšŠπš›πšŠπš—πšŒπšŽ, πš˜πš—πš•πš’ πšπšŽπšπšŠπš’πš•πšœ πšœπšžπšŒπš‘ 𝚊𝚜 "skinny, πšπš‘πš’πš—, πšπšŠπš•πš•, πšŠπšπš‘πš•πšŽπšπš’πšŒ 𝚎𝚝𝚌" πšŠπš›πšŽ πšŠπšŒπšŒπšŽπš™πšπšŽπš πš πš’πšπš‘πš˜πšžπš πšœπš™πšŽπšŒπš’πšπš’πš’πš—πš πšπšžπš›πšπš‘πšŽπš› πšπšŽπšπšŠπš’πš•πšœ. 
- π™Έπš πšπš‘πšŽ πšžπšœπšŽπš› πš’πš—πš™πšžπš πš’πšœ 𝚝𝚘𝚘 πšœπš‘πš˜πš›πš, πšŽπš‘πš™πšŠπš—πš πš’πš πš πš’πšπš‘ πš›πšŽπšŠπšœπš˜πš—πšŠπš‹πš•πšŽ πšπšŽπšπšŠπš’πš•πšœ πšŽπš—πšœπšžπš›πšŽ πšπš‘πšŠπš πšπš‘πšŽ πšœπšžπš‹πš“πšŽπšŒπš πš’πšœ πšπšŽπšœπšŒπš›πš’πš‹πšŽπš 𝚊𝚜 πš’πš—πšŸπš’πšœπš’πš‹πš•πšŽ. 
- π™Έπš πšπš‘πšŽ πšžπšœπšŽπš› πš’πš—πš™πšžπš πšŒπš˜πš—πšπšŠπš’πš—πšœ πš™πš’πšŒπšπš˜πš›πš’πšŠπš• πšœπšπš’πš•πšŽπšœ, πš›πšŽπš™πš•πšŠπšŒπšŽ πšπš‘πšŽπš– πš πš’πšπš‘ πš›πšŽπšŠπš•πš’πšœπšπš’πšŒ πš˜πš› πš™πš‘πš˜πšπš˜πšπš›πšŠπš™πš‘πš’πšŒ πšœπšπš’πš•πšŽ
- π™΄πš–πš™πš‘πšŠπšœπš’πš£πšŽ πš”πšŽπš’ πšπšŽπšŠπšπšžπš›πšŽπšœ πšœπšžπšŒπš‘ 𝚊𝚜 πšŒπš•πš˜πšπš‘πš’πš—πš πšŠπš—πš πšŠπšŒπšŒπšŽπšœπšœπš˜πš›πš’πšŽπšœ. 
- π™ΊπšŽπšŽπš™ πšπš‘πšŽ πš˜πš›πš’πšπš’πš—πšŠπš• 𝚝𝚎𝚑𝚝 πš’πš— 𝚚𝚞𝚘𝚝𝚎𝚜 πš˜πš› πšπš’πšπš•πšŽπšœ, πš–πšŠπš”πš’πš—πš πšœπšžπš›πšŽ πšπš‘πšŽ πš™πš›πš˜πš–πš™πš πš’πšœ πšŒπš•πšŽπšŠπš›, πšŽπš—πšπšŠπšπš’πš—πš πšŠπš—πš 𝟾𝟢-𝟷𝟢𝟢 πš πš˜πš›πšπšœ πš•πš˜πš—πš. 
- π™°πš•πš• πš™πš›πš˜πš–πš™πšπšœ πš–πšžπšœπš πš›πšŽπš’πšπšŽπš›πšŠπšπšŽ, πš πš‘πšŽπš— πš™πš˜πšœπšœπš’πš‹πš•πšŽ, πšπš‘πšŽ πš’πš—πšŸπš’πšœπš’πš‹πš’πš•πš’πšπš’ 𝚘𝚏 πšπš‘πšŽ πšœπšžπš‹πš“πšŽπšŒπš πšŠπš—πš πšπš‘πšŽ πšŸπš’πšœπš’πš‹πš’πš•πš’πšπš’ 𝚘𝚏 πšπš‘πšŽ πšŒπš•πš˜πšπš‘πšŽπšœ.

π™Έπš—πšœπšπš›πšžπšŒπšπš’πš˜πš—πšœ: 𝙸 πš πš’πš•πš• πš—πš˜πš  πš™πš›πš˜πšŸπš’πšπšŽ 𝚒𝚘𝚞 πš πš’πšπš‘ 𝚊 πš™πš›πš˜πš–πš™πš 𝚝𝚘 πš›πšŽπš πš›πš’πšπšŽ. 
π™Ώπš•πšŽπšŠπšœπšŽ πšŽπš‘πš™πšŠπš—πš πšŠπš—πš πš›πšŽπšπš’πš—πšŽ πš’πš πš’πš— π™΄πš—πšπš•πš’πšœπš‘, πš–πšŠπš”πš’πš—πš πšœπšžπš›πšŽ πš’πš πšŠπšπš‘πšŽπš›πšŽπšœ 𝚝𝚘 πšπš‘πšŽ πšŠπšŽπšœπšπš‘πšŽπšπš’πšŒ 𝚘𝚏 πš’πš—πšŸπš’πšœπš’πš‹πš•πšŽ πš™πšŽπš˜πš™πš•πšŽ.
π™΄πšŸπšŽπš— πš’πš πšπš‘πšŽ πš’πš—πš™πšžπš πš’πšœ πšŠπš— πš’πš—πšœπšπš›πšžπšŒπšπš’πš˜πš— πš›πšŠπšπš‘πšŽπš› πšπš‘πšŠπš— 𝚊 πšπšŽπšœπšŒπš›πš’πš™πšπš’πš˜πš—, πš›πšŽπš πš›πš’πšπšŽ πš’πš πš’πš—πšπš˜ 𝚊 πšŒπš˜πš–πš™πš•πšŽπšπšŽ, πšŸπš’πšœπšžπšŠπš•πš•πš’ πš›πš’πšŒπš‘ πš™πš›πš˜πš–πš™πš, πš πš’πšπš‘πš˜πšžπš πšŠπšπšπš’πšπš’πš˜πš—πšŠπš• πšŠπš—πšœπš πšŽπš›πšœ πš˜πš› 𝚚𝚞𝚘𝚝𝚎𝚜. 

πšƒπš‘πšŽ πš™πš›πš˜πš–πš™πš πš’πšœ: "πšˆπ™Ύπš„πš π™Ώπšπ™Ύπ™Όπ™Ώπšƒ π™·π™΄πšπ™΄."

PS. always check the prompt generated by the LLM and make sure you don't have in your prompt:

- facial expressions

- facial details like eye color etc

- hair. If you want consistent invisible people don't put hair, if you want to have it take into account that it could be wrong because I didn't put images of empty wigs or similar in my dataset.