Sign In

z_animimage_turbo_by_Lau_alpha_V2_fp8

44

314

16

Verified:

SafeTensor

Type

Checkpoint Trained

Stats

121

0

Reviews

Published

Dec 24, 2025

Base Model

ZImageTurbo

Hash

AutoV2
B57C0BD1F4
Oni Badge
LauShine's Avatar

LauShine

License:

打破次元壁的艺术引擎 —— [z_animimage_turbo_by_Lau_alpha_V2] 正式发布

经过V1版本的沉淀与数千次的极限压力测试,我们带来了全新的 z_animimage_turbo_by_Lau_alpha_V2。这不仅仅是一次简单的迭代,而是对“风格化”与“泛化性”平衡点的重新定义。

V2 版本核心进化:

1. 卓越的风格兼容与无限创作空间 (Superior Compatibility & Creative Freedom)
V2 打破了单一画风的桎梏,极大地拓展了对不同画风的适应能力。它不再生硬地覆盖画面,而是能敏锐响应提示词中复杂的材质描述,为你解锁了自由的创作场域。无论是保持物理质感的写实背景,还是极具张力的风格化主体,V2 都允许你在同一画面中进行大胆的艺术实验,让**“虚实结合”“多风格混搭”**的创意落地成为可能。

🎨 2. 全能画风驾驭 (Universal Style Control)
古风工笔的细腻留白,到UE5概念美术的宏大光影;从日系黑白漫画的张力线条,到超现实主义的材质置换。V2在保持底模质感的同时,大幅提升了对不同艺术媒介(水墨、油画、3D渲染、矢量插画)的响应速度和准确度。

🌌 3. 宏大叙事与微观细节 (Macro & Micro)
强化了对巨物恐惧(Megalophobia)和微观世界的理解。无论是手托星系的宇宙巨神,还是血管内的纳米战争,V2都能在保证构图张力的同时,填充惊人的细节密度。

🧠 4. 优化的提示词理解 (Prompt Adherence)
V2对自然语言长提示词和稀疏标签(Sparse Tags)的理解更上一层楼。它能敏锐捕捉你对**光影(如丁达尔效应、体积光)材质(如半透明、液态金属)**的描述,拒绝“抽卡”,让每一次生成都更接近你的想象。

💾 5. 双格式支持与极速推理 (Dual-Format & High Efficiency)
为了兼顾不同用户的硬件配置需求,我们同步提供了 FP8(显存优化)和 BF16(极致画质)两种模型格式。fp8 经过极致优化,仅需8G显存即可生成高完成度画面。

建议设置 (Recommended Settings):

  • 采样器 (Sampler): Euler

  • 调度器 (Scheduler): Simple

  • 步数 (Steps): 8 - 10

  • CFG Scale: 1.0 - 1.5

从此刻起,让想象力不再受维度的束缚。欢迎返图,见证V2的无限可能!

PS:有一些我不能上传的内容(你懂的)请自行尝试,注意提示词要相信,zimage喜欢细节

Breaking the Dimensional Barrier — Introducing [z_animimage_turbo_by_Lau_alpha_V2]

Building upon the foundation of V1 and rigorously tested through thousands of extreme styling scenarios, we are proud to present the all-new z_animimage_turbo_by_Lau_alpha_V2. This is not just an update; it is a redefinition of the balance between "Style Intensity" and "Generalization."

Key Evolutions in V2:

1. Superior Compatibility & Limitless Creative Freedom
V2 breaks free from the constraints of a single art style, significantly expanding its adaptability to various painting styles. Instead of forcefully overwriting the image, it keenly responds to complex material descriptions in your prompts, unlocking a realm of free creation. Whether maintaining photorealistic backgrounds or rendering high-tension stylized subjects, V2 allows for bold artistic experiments within a single frame, making "Virtual-Real Fusion" and "Mixed-Media Styles" truly possible.

🎨 2. Universal Art Style Mastery
From the delicate negative space of Traditional Ink Wash (Gongbi) to the epic lighting of UE5 Concept Art; from the dynamic lines of B&W Manga to the material displacement of Surrealism. V2 significantly improves response accuracy across various artistic media (Oil Painting, 3D Render, Vector Art) while maintaining the quality of the base model.

🌌 3. Epic Narratives & Microscopic Details
We have enhanced the model's understanding of Megalophobia and Microscopic Worlds. Whether it's a cosmic titan holding a galaxy or a nano-war inside a blood vessel, V2 delivers breathtaking compositional tension combined with insane detail density.

🧠 4. Enhanced Prompt Adherence
V2 takes the understanding of Natural Language Prompts and Sparse Tags to the next level. It sharply captures your descriptions of Lighting (e.g., God Rays, Volumetric Fog) and Materials (e.g., Subsurface Scattering, Liquid Metal). Say goodbye to "gacha-style" generation—get results that match your vision.

💾 5. Dual-Format Support & High Efficiency
To accommodate various hardware configurations, we provide both FP8 (VRAM optimized) and BF16 (Maximum Quality) formats. FP8 is extremely optimized and only requires 8GB of GPU memory to generate high-quality images.

Recommended Settings:

  • Sampler: Euler

  • Scheduler: Simple

  • Steps: 8 - 10

  • CFG Scale: 1.0 - 1.5

From this moment on, let your imagination break free from dimensional constraints. We can't wait to see your creations with V2!

PS: There are some contents I can't upload (you know why). Please try it yourself, and trust the prompts. ZImage likes details.


Long time no see!

This is MY first anime fine-tuned model based on z-image, a recently emerging open-source model.

While the base model performs very well, its generalization capabilities for manga and illustrations are lacking.