Type | |
Stats | 2,340 26,490 |
Reviews | (240) |
Published | Jun 12, 2024 |
Base Model | |
Hash | AutoV2 B6C2C16F3E |
Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step
Abstract
Recently, Direct Preference Optimization (DPO) has extended its success from aligning large language models (LLMs) to aligning text-to-image diffusion models with human preferences. Unlike most existing DPO methods that assume all diffusion steps share a consistent preference order with the final generated images, we argue that this assumption neglects step-specific denoising performance and that preference labels should be tailored to each step's contribution.
To address this limitation, we propose Step-aware Preference Optimization (SPO), a novel post-training approach that independently evaluates and adjusts the denoising performance at each step, using a step-aware preference model and a step-wise resampler to ensure accurate step-aware supervision. Specifically, at each denoising step, we sample a pool of images, find a suitable win-lose pair, and, most importantly, randomly select a single image from the pool to initialize the next denoising step. This step-wise resampler process ensures the next win-lose image pair comes from the same image, making the win-lose comparison independent of the previous step. To assess the preferences at each step, we train a separate step-aware preference model that can be applied to both noisy and clean images.
Our experiments with Stable Diffusion v1.5 and SDXL demonstrate that SPO significantly outperforms the latest Diffusion-DPO in aligning generated images with complex, detailed prompts and enhancing aesthetics, while also achieving more than 20× times faster in training efficiency. Code and model: https://rockeycoss.github.io/spo.github.io/
Model Description
This model is fine-tuned from stable-diffusion-xl-base-1.0. It has been trained on 4,000 prompts for 10 epochs. This checkpoint is a LoRA checkpoint. For more information, please visit here
Citation
If you find our work useful, please consider giving us a star and citing our work.
@article{liang2024step,
title={Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step},
author={Liang, Zhanhao and Yuan, Yuhui and Gu, Shuyang and Chen, Bohan and Hang, Tiankai and Li, Ji and Zheng, Liang},
journal={arXiv preprint arXiv:2406.04314},
year={2024}
}